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SUPG FINITE NUMERICAL ELEMENT SOLUTIONS FOR
NON-COMPRESSIBLE NAVIER-STOKES EQUATION SETS

/372*
Xu Guoqun Zhang Guofu

ABSTRACT

This article sets out from steady state non-compressible
Navier-Stokes equation sets and constructs weighted residual SUPG
formulations. In order to guarantee the precision of numerical
value solutions, this article--with regard to speeds--selects
eight points for the interpolation of values and maintains the
second order derivative quantities in perturbation terms.
Looking from the point of view of calculation instances made
using the methods of this article, the calculated results have
proved very satisfying.

INTRODUCTION

When one has the existence of convection terms, the

coefficient matrices associated with Galerkin methods are

asymmetrical. This will very often give rise to oscillations in

numerical value solutions. As far as problems with high Pe

numbers or Re numbers are concerned, this type of phenomenon is

particular severe. In order to control the convection effects

associated with each single variable, it is possible to take

grids and make them finer. However, this will cause the loss of

large amounts of content. The most recent research clearly shows

that, going through the construction of appropriate Petrov-

Galerkin weighted residual formulae, finite element windward

methods are capable of resolving very well the problems described

above [1-2]. In 1982, Hughes and others put forward SUPG

(Streamline Upward/Petrov-Galerkin) methods [3]. The methods in

question not only possess the strengths of the original windward

* Numbers in margins indicate foreign pagination.

Commas in numbers indicate decimals.



methods, they also solve false diffusion problems associated with

windward methods. Reference [4] uses SUPG finite element methods

to solve non-steady state, non-compressible N-S equation sets.

In conjunction with this, it uses penalty methods to deal with

non-compressibility conditions (continuity equations). In order

to eliminate second order derivative terms in variation

equations, the references in question, as far as speeds are

concerned, opt for linear interpolations.

This article sets out directly from steady state non-

compressible Navier-Stokes equation sets (belonging to the

elliptical type) in order to construct SUPG variation equations.

In order to guarantee the precision of solutions, the article in

question opts for four node point interpolations in the case of

pressures and eight node point interpolations in the case of

speeds. In this way, it is necessary to consider the influences

of windward flow directions on viscosity diffusion terms.

Looking in terms of the calculated cases which have already been

completed, the methods of this article are precise and accurate,

convergent and stable. Calculation results are fully

satisfactory.

I. MODEL EQUATIONS

We now discuss the steady state constant coefficient model

advection diffusion equation

u 3x Reý cax'- 1 1

It possesses the boundary conditions

0(o)=o, 4(C)=i (1.2)
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First of all, consideration is given to the Galerkin steady
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state numerical value solutions associated with the equations

discussed above at times when u = 1. The solution in Fig.la is

obtained for Re = 1. The solution is a smooth one. Following

along with increases in Re, the cross section associated with

is blown down the flow. Fig.lb is the solution when Re = 20.

However, when Re is increased a step further, the bending places

in the cross sections are blown past the inverse second node

point i = 10. At this time, the lattice Reynolds number RC is

greater than 2. Numerical value solutions show the appearance of

oscillations, simulating equation (1.1) in an excessively early

manner. When Re -> infinity, one has the appearance of

singularity. See Fig.lc. One can clearly see that Galerkin

solutions and center difference solutions are identical in their

natures.

0 01

5 5 7 9 11 I 3 5 7 9 I1

(a) Rc=i.Rc=O.1 (b) Re=20,Rc=2

.00.5

-0.5

-1.0

Fig. 1 Galerkin Finite Element Numerical Results
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In order to eliminate oscillation, besides the possibility

of methods for fining up grids, there is another type of method

for rectification, that is, opting for the use of Petrov-Galerkin

methods. At present, we will define the weighted function in one

variable W' to be

_M+ (1.3)

In this, M is an interpolation function. It is a function Co.

This is continuous on single variable boundaries. P' is the

weighted function perturbation amount. It is a function C-.

It is not continuous on single element or variable boundaries.

If P' = 0, the methods discussed above then turn into Galerkin

methods.

As far as writing out the Petrov-Galerkin forms to express

equation (1.1) is concerned, in conjunction with this, one takes

the boundary conditions and makes the basic boundary conditions

for treatment. Thereupon, one has the weak formulation

= ___M -• 1 36dM•d
-... 3, Re ... x "- -

(1.4)
S"+• P' u--Ydd=0
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This article--as far as-0 is concerned-- selects linear

interpolation, that is, M is a mountain shaped function.

Because this is the case, there is no second order derivative

term in the second integral term of the equation above. nel is a

single element or variable number. The weighing function

perturbation amount P' is taken to be

P'=r u -am
3x (1.5)

r is taken to be

r 4 h/u (1.6)
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In this equation, h=:,:, a is a calculation method

parameter. As far as equation sets with different natures are

concerned, it is possible to have different values taken. The

derivation of the form for the selection of , is as follows.

The center difference FDE associated with equation (1.1) is

capable of being expressed as

2qS( Ax Re 2 Ax Re 2 -i (1

The elegant solution is then

Let

Ax u Re =J--hu Re
2 2

The equations above are capable of being written as

e2 -_ 2 +, ue2$
U e•-O 1 1 e;•i € - (1I. 8)

In order to guarantee absolutely the production of strict

solutions for any Pe number, it is possible on the two sides of

the equation above to simultaneously add and take away equation

(1.7). One then has

(-Ax2Re +ux ) =(A2e -+--1-u )

Ax Re

In this
eo+e- 1
e- -e- (1.9)
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The changes versus 9 are as shown in Fig.2.

- I
-15 -10 -5 0 5 10 15

Fig.2 -
0.5 (40

100

0

3 9 11 I

Fig.3 SUPG Finite Element
Numerical Results

Key: (1) This Article's
Solution (2) Precise Solution
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SUPG numerical value solutions are set out in Fig.3. From

the Fig., it is possible to see that SUPG finite element methods

not only effectively restrain the oscillations associated with

numerical value solutions but also guarantee the precision of

numerical value solutions.

II. VARIATION EQUATIONS

The steady state non-compressible N-S equation set is

(3u av (2.1)
ax ,- =0

au (3a 3u (2.2)

v , Y ax Re + ax ay,-)
aV av - 3p +1 av (2+ x •- + ) (2.3)

ax a3 y Re ax2_ ay
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In these equations, u and u are velocity components. p is

pressure.

As far as the equation set discussed above is concerned,

this article constructed a variation equation set of the form

below.

Continuity Equation

S(M+PI) I-au ay
/ = 

(2.4)

Momentum Equations

x direction

u au +v a + )+-_L( aN au + aL au
+ _ X ay - - R -- - ýx -x- a-- y ay

1u au (2.5)

=+ ..!N--•dr-:

y direction

u -- + --- +- ev + aN d.
--a- 3x ov dx oa ay

+ P u a v-+ +v 3y dy Re *. r .rd3 (2.6)

In these equations, M and N are respectively the basic

interpolation functions associated with pressure and speed. They

are continuous on each element boundary. In order to raise the

precision of solutions, this article has opted for four node

point interpolation with regard to pressure and chosen eight node

point interpolation for speeds.

P= _M, Pi (2.7)
i-i

8

u, v= - N, ui , v, (2.8)
7=1
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In this way, in equations (2.5) and (2.6), one thereupon has the

appearance of second order derivative terms.

In equations (2.4) - (2.6), all the Dirchilet form boundary

conditions act as the basic boundary conditions for treatment.
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III. SELECTION OF WEIGHING FUNCTION PERTURBATION AMOUNTS

On the basis of the basic concepts associated with SUPG

finite element methods, this article takes P1' and P2' and writes

them as
P" =r u x " - (3.1)

Px -- y- (3.2)

In the equations, r-u and r.v are, respectively, artificial

viscosity coefficients associated with the x direction and y

direction. Referring to reference [4], one takes - to be

S=ajh/a (3.3)

The meaning of a is the same as that in equation (1.6). The

value of i is still taken from equation (1.9). From this, it

is possible to see that, when Re numbers are very large, the

original equation set viscosity terms can be ignored, simplifying

to an Euler equation set. At this time, j = 1. When Re

numbers are extremely small, the original equation set viscosity

terms are far greater than inertial terms. At this time,

there is no need, in calculations, to again add on artificial

viscosities. Because this is the case, i tends close to

zero.

As far as composite or synthetic speed a in single

variable center calculations is concerned, the equation
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expressing it is

a =V/? v (3.4)

h is the weighted average of the single variable

characteristic lengths h, and h2  (see Fig.4). The amount of

weighing is a unit speed component, that is,

h (h , u hhu)/a (3.5)

In this

Shi= 2[(axi/3!)2 + ( xx ! /(7) 2 ,] i < 2 (3.6)

In equation (3.6), ' and 7 are single element or unit

coordinates (Fig.4). Obviously, if u > u, then, h is primarily

determined by hl. In particular, when u = 0, the two dimensional

problem becomes a one dimensional problem. At this time, h is

then a unit width.

IV. NUMERICAL SUBSTITUTION METHODS OF CALCULATION AND
INSTANCES OF CALCULATIONS

This article uses asymmetrical linear equation sets formed

in

association with the calculation methods put forward above. In

conjunction with this wave matrix methods are used for solutions.

In order to empirically demonstrate the degree of usability

and precision associated with the methods of this article, it

makes the calculations below:

Calculation Case 1 Couette Flows

Fig.5 shows, with various types of pressure gradients, the

calculation results associated with the flow movements between

two parallel flat plates.
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U=3

Fig. 4 Isoparametric Element 3

d -2.5

Y'.. Fig.5 Couette Flow Between
h, Infinite Parallel Plates

x
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Calculation Case 2 Recirculation

This article calculates a two dimensional rear step or

recirculation problem for Re = 73 (see Fig.6). In the

calculations, consideration is given to the influence of the

effects of gravity. Flow calculation results within the base

zone are shown in Fig.7.

Calculation Case 3 Recirculation or Winding Flows

Associated with Cylinders

Fig. 8 is the calculation results for noncompressible

laminar flow recirculation or winding flows associated with

cylinders for Re = 20. From the Fig., it is possible to see that

stationary point wall surface pressures are the highest. Behind

them, due to flow speeds being speeded up, wall surface pressures

drop. This is a smooth pressure flow process. This section of

the process advances directly to the place where cylinder surface

10



flows are highest. From the place where the cylinder surface

flows are highest to the wake or tail section, speeds gradually

drop. Wall surface pressures rise. This is a reverse pressure

flow process. Fig.9 is a pressure contour diagram associated

with the vicinity of cylinder surfaces for cylindrical winding

flows.

U=Y= 0

-~ h

~L U=v=o
x

Fig. 6 Schematic Representation
of Recirculation

Key: (1) Upper Flow Wall Surface

Fig.7 Stream Function Plot
and Flow Direction Over

Bottom of Backward Facing

.0 
Step. Re = 73. A* = 0.000386

0.6 o 6

0.4-

0.2

0. 0

-0.2

-0, 4

-0.61.-
0.0 0.2 C..4 0. G 0.8 L0 S

Fig.8 Pressure Coefficient on
Cylinder. Re = 20 (Based on

Cylinder Diameter)
Key: (1) Results from This Article
(2) Reference (6)
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y •

Fig.9 Pressure Contour (Re = 20)

-; A- -- '- .• .

Fig. 10 Velocity Vector for Viscous Flow Past Cylinder
(Re = 20)

Fig.ll Stream Function Plot Behind Cylinder (Re = 20)
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Flow functions obtained from calculations for cylinder

winding flow speed fields and cylindrical wake regions are shown

in Fig.'s 10 and 11. It is possible to see that, due to

separation of object surface boundary layers, fluids, down the

flow from cylinders, form vortices.

In the calculation cases which were made and discussed

above, it is possible to see that the calculation results are

satisfactory. This clearly shows that the methods in this

article are precise and accurate, convergent, and stable.
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